首页> 外文OA文献 >Convective Instability Of The Solar Corona: Why The Solar Wind Blows
【2h】

Convective Instability Of The Solar Corona: Why The Solar Wind Blows

机译:太阳能电晕的对流不稳定性:为何太阳风吹起

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Chapman's (1957) conductive model of the solar corona is characterized by atemperature varying as r**(-2/7) with heliocentric distance r. The densitydistribution in this non-isothermal hydrostatic model has a minimum value at123 RS, and increases with r above that altitude. It is shown that thishydrostatic model becomes convectively unstable above r = 35 RS, where thetemperature lapse rate becomes superadiabatic. Beyond this radial distance heatconduction fails to be efficient enough to keep the temperature gradientsmaller than the adiabatic lapse rate. We report the results obtained byLemaire (1968) who showed that an additional mechanism is then required totransport the energy flux away from the Sun into interplanetary space. Hepointed out that this additional mechanism is advection: i.e. the stationaryhydrodynamic expansion of the corona. In other words the corona is unable tostay in hydrostatic equilibrium. The hydrodynamic solar wind expansion is thusa physical consequence of the too steep (superadiabatic) temperature gradientbeyond the peak of coronal temperature that can be determined from white lightbrightness distributions observed during solar eclipses. The thermodynamicargument for the existence of a continuous solar wind expansion which ispresented here, complements Parker's classical argument based on boundaryconditions imposed to the solutions of the hydrodynamic equations for thecoronal expansion: i.e. the inability of the mechanical forces to hold thecorona in hydrostatic equilibrium. The thermodynamic argument presented here isbased on the energy transport equation. It relies on the temperaturedistribution which becomes super-adiabatic above a certain altitude in theinner corona.
机译:查普曼(Chapman,1957年)的日冕电导模型的特征是,温度随着日心距r而变化为r **(-2/7)。该非等温流体静力模型中的密度分布在123 RS处具有最小值,并在该高度以上随r增加。结果表明,该流体静力学模型在r = 35 RS以上时对流不稳定,温度下降率变得超级绝热。超过此径向距离导热效率不足以保持温度梯度小于绝热消失率。我们报告了由Lemaire(1968)获得的结果,该结果表明,然后需要附加的机制才能将能量流从太阳传输到行星际空间。他指出,这种额外的机制是平流:即电晕的静态流体动力膨胀。换句话说,电晕无法保持静水平衡。因此,水动力的太阳风膨胀是超出日冕温度峰值的太陡(超级绝热)温度梯度的物理结果,日冕温度峰值可以由日食期间观察到的白光亮度分布确定。此处表示存在连续太阳风膨胀的热力学论点是对帕克基于论点条件的经典论点的补充,该论点是基于对日冕膨胀流体力学方程的解施加的边界条件:即机械力无法将电晕保持在静水平衡中。此处介绍的热力学论据基于能量传输方程。它依赖于温度分布,该温度分布在内部电晕中的特定高度以上变得绝热。

著录项

  • 作者

    Lemaire, Joseph;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号